RADIATION HEAT TRANSFER

Planck's Law

- Emitted radiation is a function of wavelength
- At any temp, it increases with wavelength, reaches a peak, and then decreases with increasing wavelength
- At any wavelength, emitted radiation increases with temperature
- At higher temps larger fraction of the radiation is emitted at shorter wavelength
- At 5800 K , the solar radiation reaches its peak in the visible region.
- The wavelength at which the peak occurs for a specified temp is given by Wien's displacement law as

$$
\lambda_{\max } \cdot T=\text { Constant }=2898 \mu \mathrm{~m} . \mathrm{K}
$$

Wein's Displacement Law

- Wein's displacement law states that "the product of absolute temp and the wavelength $\left(\lambda_{\max }\right)$ at which the emissive power is maximum is constant".
- This law suggests that $\lambda_{\max }$ is inversely proportional to the absolute temperature.
- So the maximum spectral intensity of a radiation shifts towards the shorter wavelength with rising temp.

Intensity of Radiation

- When a plane surface emits radiation, all of it will be intercepted by a hemispherical surface placed over it and the directional distribution of radiation is not uniform.
- So we need a quantity that describes the magnitude of radiation emitted in a specified direction in space called Radiation Intensity (I)
- Intensity of Radiation is defined as the rate of energy leaving a surface in a given direction per unit solid angle per unit area of the emitting surface normal to the mean direction in space.
- The direction of radiation is described in
 spherical coordinates in terms of zenith angle (θ) and azimuth angle($\phi)$.
- For a diffusely emitting surface intensity of the emitted radiation is independent of direction and thus
$\mathrm{I}=$ constant.
- So fro a diffusely emitting surface: $\mathrm{E}=\pi \mathrm{I}$
- For a black body $\mathrm{E}_{\mathrm{b}}=\pi I_{b}$
- Ie, $I_{b}=\frac{E_{b}}{\pi}=\frac{\sigma T^{4}}{\pi}$

Solid Angle(ω)

- A solid angle is defined as a portion of the space inside a sphere enclosed by a conical surface with the vertex of the cone at the center of the sphere.
- It is denoted by ' ω ' and its unit is steradian(sr).
- For a sphere $\omega=4 \Pi$ sr. and for a hemisphere $\omega=2 п$ sr.
- The differential solid angle $\mathrm{d} \omega$ subtended by a differential area dS on a sphere of radius ' r ' can be expressed as

$$
\mathrm{d} \omega=\frac{d S}{r^{2}}=\sin \theta d \theta d \emptyset
$$

- Where dS is the area normal to the direction of viewing.

A slice of pizza of plane angle α

A slice of watermelon of solid angle ω

FIGURE 12-17

Describing the size of a slice of pizza by a plane angle, and the size of a watermelon slice by a solid angle.

Radiation

Solid angle for a hemisphere:

$$
\underset{\text { Henisphere }}{\omega}=\int_{\theta=0} d \omega=\int_{\phi=0}^{\pi / 2} \sin \theta d \theta d \phi=2 \pi
$$

Projected area

FIGURE 12-19

Radiation intensity is based on projected area, and thus the calculation of radiation emission from a surface involves the projection of the surface.

